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Implementation of Benchmarking Framework

* LLMs in science workflows: Potential efficiency gains in literature review, knowledge
comprehension, and data analysis.

* Foundation: Extends LM-Polygraph [2], which
encapsulates each uncertainty metric computation steps in O Updating Progress Bar

* Hallucination risk: LLMs produce confidently phrased but factually incorrect outputs that are hard to classes, defining required and provided dependencies.

identity.

* Configurable execution nodes: Generalizes modularity by Blesraing wilelirplle lngoming ¢ |ges

representing every processing step as a runtime-
configurable node.

* Role of Uncertainty Quantification (UQ): Automated UQ methods can flag low-confidence or
potentially erroneous generations, supporting satfer downstream use.

Skipping Fully Computed Items

* Benchmarking objective: Develop a framework for reproducible benchmarking of uncertainty .
metrics; asses token-level calibration and reliability of sequence-level UQ metrics in scientific question
answering using the framework.

Dynamic DAG construction: Builds an acyclic directed Loading/ Storing Cached Results

graph at runtime from wuser specifications, enabling
optimized execution order.

* Performance optimizations: Supports asynchronous
Summary Of Results processing, result reuse via caching, and batching to

enable efficient computations.

Batching of Items

Resource Assignment

* First large-scale UQ benchmark for LLMs in scientific QA, covering token-level calibration and . Jion Vyrapper

_ . Layered execution wrapper: Manages resource allocation
multiple sequence-level metrics.

and persistent, disk-backed caching for scalable,
* Instruction tuning polarizes token probabilities: Models become overconfident regardless of reproducible benchmarking of large datasets.
correctness, undermining token-level UQ.

llation of new Statistics

* Sequence-level findings
Figure 1 (right). Abstract Visualization of

the Order of Computation Steps as Acyclic Figure 2 (top). Visualization of data items passing through layers of nodes in the

execution graph. Layers, highlighted in blue, are applied as decorators and are

o Verbalization-based metrics are unreliable

o Frequency of Answer better aligns with correctness but demands heavy computation and semantic Directed Graph in Reworked LM- ditionallv activated based on th fouration. Th transf it
i Polygraph This features the dataset conditionally activate ased on € conmguration. €y may transrorm, er,
clustering. (orange), intermediate computation steps ‘ batch, or consume data either before or after computation. Black dots indicate where
o Claim-Conditioned Probability fails at token level due to vanishing confidence over long (blue) and calculation of the final uncertainty individual layers access the data. Data may not pass through all layers; for example,
: : : : : if a node's result is cached for an item, the Caching Layer retrieves and returns the
generations and poor semantic equivalence detection. metric scores (green).

cached result without invoking lower layers. The execution wrapper manages the

* LM-Polygraph framework [2] re-engineered into a modular, extensible framework for scalable, Q invocation of the computation encapsulated by the node.
reproducible UQ benchmarking.

Token Level Calibration
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Previous Work . GPT-4 Base Model Results
Calibrat . . GPT-4 Technical R 11 Fval b ECE:0.007 * Normalization is essential: Raw label probabilities are undermined by 0.8 08"
a 1. ratlon.comparlson mn ) echnical Report | .]' va uat.e ase = overall task comprehension and yield poor calibration; normalized scores 5
vs. instruction-tuned GPT-4 using MMLU, rephrasing questions as c. : : : £ 061 0.61
o = enable meaningful confidence estimates. =
classification task. 2 . : : : : : : g
. o 5 o * Reasoning complexity raises ECE: Calibration error grows with reasoning 5 o4, 041
. Confldence measurement: Used label probabilities (A/B/C/D) as 2 demands — GSMSK and GPQA exhibit higher ECE — highlighting token < IeeitE
confidence scores. probabilities’ limitations for multi-step and symbolic reasoning,. °21 °2
* Key findings: Base GPT-4 showed strong calibration, instruction-tuned " Confidence Bins * Fact Retrieval vs. Complex Tasks: Token-level probabilities reliably capture | e LU ELLL e
GPT-4 exhibited degraded calibration (see Figure 3). , aleatoric uncertainty in fact retrieval but become overconfident and o ' | ' | o | ' | '
: : : : : . GPT-4 Instruction Tuned Model . : Mistral-Small-24B-Base = Mistral-Small-24B-Instruct
* Underlying hypothesis: Instruction tuning shifts token-probability — »———— y inadequate for tasks that demand reasoning. o o
distributions away from the original training data “ground truth”, ey ' * Mixed impact of instruction tuning on ECE: Mistral 7B and Llama 70B show ’
degrading calibration significantly. =y degraded ECE post-tuning, whereas ECE for Mistral 24B remains largely ¢ *° .
£ =
Figure 3 (right). Calibration plots of the base model (top) and the instruction tuned g unChanged° .i% 0.6- — |
(bottom) GPT-4 model on a subset of the MMLU dataset. On the x-axis are bins according &  Universal polarization of token probabilities: All instruction-tuned models & BN
to the model’s confidence (logprob) in each of the A/B/C/D choices for each question; on the <. concentrate probability mass on a single label, reducing nuance and S 04 041 e
y-axis is the accuracy within each bin. The dotted line represents perfect calibration. Right: liabilitv of tok babiliti 6d ' Fi 4 < Bl
Calibration plot of the post-trained GPT-4 model on the same subset of MMLU. The post- R | reliability of token probabilities as confidence scores (see Figure 4). 0.2 0.2
training hurts calibration significantly. Adapted from the GPT-4 Technical Report [1] Contfidence Bins |7
Ministral-8B-Instruct-2410 figure 4 (right). Impact of Instruction Tuning on :

10 Calibration (MMLU). Calibration plots show normalized fro M ke eIl ot e el
entropy of label probabilities, focusing on the most likely Llama-3.1-70B Llama-3.3-70B-Instruct
o R o 081 label. Orange curves represent base models; blue curves +0 v I ‘
Exp erlment DESlgn 'CE show instruction-tuned versions. Darker shades indicate
.00 higher item counts per bin. Instruction tuning shifts counts  _ 8 o8
* Datasets: Four multiple-choice datasets - MMLU, ArcReasoning, GSM8K, GPQA = toward the highest-confidence bin, implying reduced T e
Y041 oqe .~ U.07 .61
: : : : : : z robability for other labels (not shown).
* Models: three model-size pairs (7 B, 24 B, 70 B), each with a base and instruction-tuned version. < P y ( ) g _
e Confid ine: Treated label babiliti del fid both d 0.2 Figure 5 (left). Calibration plot for Ministral-8B-Instruct on § 0.4 0.4 —
on E.!nce SCOI'lng. reate abel probabilities as modael conifidence scores, bo raw an the same MMLU dataset. While this model lacks apublically & —
normalized (excluding mass on non-label tokens). o oa o o0s §o available base model, it shows significantly less polarization 0.21 0.21
* Calibration analysis: Compared calibration performance (e.g., calibration plots, ECE) between Confidence Bins compared to the other instruction tuned models assessed.
base vs. instruction-tuned models and between raw vs. normalized confidence. 02 04 06 08 10 02 04 06 08 10
Confidence Bins Confidence Bins

Sequence Level Calibration of Uncertainty Metrics

Mistral-Small-24B-Instruct

Mistral-Small-24B-Instruct

Experiment Design Verbalized Uncertainty [4] Frequency of Answer

* Models & datasets: Benchmarked four Metric Explanation: Verbalized Uncertainty prompts the model, - Metric Explanation: Frequency of Answer
instruction-tuned models (7B, 8B, 24B, 70B) on immediately after answering, to output a numeric confidence score quantifies confidence by sampling multiple
eight scientific QA datasets—five multiple- * Biased score distribution: Models consistently produced a narrow generations for the same prompt and assigning
choice and three arithmetic—each with known range of high verbalized confidence values (e.g., 0.0, 0.5, 0.9, 1.0, see each answer a score equal to the frequency of
ground truth. Figure 6), likely influenced by training and instruction tuning. semantically identical samples.

* Prompting strategies: APriCoT [3] for multiple- e Unreliable calibration: Verbalized scores showed no meaningful ~ 02 04 o6 os 1 * Reliable Calibration: Higher answer
choice and CoT for arithmetic tasks. correlation with answer correctness, indicating they are unreliable frequency consistently aligns with correctness

e Sampling & scale: Subsampled each dataset to proxies for true model confidence. across task types, with increased diversity
1,000 items and sampled 10 outputs per prompt, | . . indicating  uncertainty in harder datasets,
Mistral-7B-Instruct-v0.3 Ministral-8B-Instruct-2410 Mistral-Small-24B-Instruct-2501 Llama-3.3-70B-Instruct . . . . .
totaling 181,360 QA prompts per model —_— ) — oberczy 00 oer 49 0o yielding well-calibrated confidence estimates.
, . 00 ) 8,9%.
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Limited applicability: High sampling cost and
) reliance on semantic clustering make the
5. | ~ method impractical for open-ended QA.
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Figure 6. Confidence Score Distribution for Verbalized Uncertainty per Model. Confidence Bins

* Metrics evaluated: Compared four uncertainty
metrics, as highlighted on the right.
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Summary of Results
Mistral-Small-24B-Instruct o o 0 LR K Mistral-Small-24B-Instruct
* Frequency of Answer was the only metric P(True) [5] | Clalm'CondltIOHEd PrObablllty [6] !

providing well-calibrated confidence closely 8 x 08
aligned with answer correctness. Metric Explanation: P(True) queries the model, 2 Metric Explanation: Claim-Conditioned Probability (CCP)

after producing its answer, to classify that answer evaluates uncertainty by, for each token in the model’s output,
as “True” or “False,” using the underlying token ) using an NLI model to determine which of the top probable token
probabilities assigned to the corresponding labels [ alternatives entail the original meaning, and computing token-level
as confidence scores. | certainty as the ratio of probability mass assigned to entailing
* Polarized scores: P(True) yields highly skewed SR e ra— tokens to the sum of entailing and contradicting tokens. Sequence-

* Semantic consistency validated: Frequency of confidence distributions, with most scores near - level confidence is then obtained by multiplying token certainties.
Answer supports it as a useful signal but is :

limited by high sampling cost and complex
semantic clustering, making it unsuitable for
open-ended QA.

* Conclusion: Results highlight the need for more

0.6

* Verbalized-based metrics showed strong biases

. . 0.4
and weak correlation with accuracy.
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0.2

* Claim-Conditioned Probability fails on on long
form answers

1.0 and minimal use of intermediate values, 8 * Unstable scores: CCP confidence vanishes on longer outputs
reflecting model response bias. ’ due to multiplicative token aggregation, and is further
destabilized by NLI errors during semantic token equivalence
checks and the inclusion of stop words.

* Unreliable calibration: Confidence scores show
little correlation with correctness, making /
. . ) P(True) an unreliable measure of uncertainty. AL Unreliable calibration: Confidence scores show no alignment
efficient and robu?,t uncertainty metrics and s with correctness, making CCP unreliable for sequence-level
general benchmarkmg thereof. 0.2 Coﬂﬁdencggins 08 10 uncertainty estimation. 0.2 Cogﬁdenceo.gins 08 10

Research performed at with Resources generously provided by

GSMSK
Accuracy in Bin
GSMSK
Accuracy in Bin

[1] OpenAl. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL]. R — oo

[2] Ekaterina Fadeeva et al. LM-Polygraph: Uncertainty Estimation for Language Models. 2023. arXiv: 2311.07383 [cs.CL]. D n T E C H N I S C H E ‘

[3] Kyle Moore, Jesse Roberts, Thao Pham, and Douglas Fisher. Reasoning Beyond Bias: A Study on Counterfactual Prompting and Chain of Thought Reasoning. 2024. arXiv: 2408.08651 [cs.CL]. H ‘ e J U L I c H
[4] Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn, and Christopher D. Manning. Just Ask for Calibration: Strategies for Eliciting Calibrated U N IV E RS I TAT

Confidence Scores from Language Models Fine-Tuned with Human Feedback. 2023. arXiv: 2305.14975 [cs.CL]. HELMHOLTZ ZENTRUM D R E S D E N Forschun gszen trum
[5] Saurav Kadavath et al. Language Models (Mostly) Know What They Know. 2022. arXiv: 2207.05221 [cs.CL]. DRESDEN ROSSENDORF

[6] Ekaterina Fadeeva et al. Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification. 2024. arXiv: 2403.04696 [cs.CL)].



