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• Normalization is essential: Raw label probabilities are undermined by 
overall task comprehension and yield poor calibration; normalized scores 
enable meaningful confidence estimates.

• Reasoning complexity raises ECE: Calibration error grows with reasoning 
demands — GSM8K and GPQA exhibit higher ECE — highlighting token 
probabilities’ limitations for multi-step and symbolic reasoning.

• Fact Retrieval vs. Complex Tasks: Token-level probabilities reliably capture 
aleatoric uncertainty in fact retrieval but become overconfident and 
inadequate for tasks that demand reasoning.

• Mixed impact of instruction tuning on ECE: Mistral 7B and Llama 70B show 
degraded ECE post-tuning, whereas ECE for Mistral 24B remains largely 
unchanged.

• Universal polarization of token probabilities: All instruction-tuned models 
concentrate probability mass on a single label, reducing nuance and 
reliability of token probabilities as confidence scores (see Figure 4).

Figure 4 (right). Impact of Instruction Tuning on 
Calibration (MMLU). Calibration plots show normalized 
entropy of label probabilities, focusing on the most likely 
label. Orange curves represent base models; blue curves 
show instruction-tuned versions. Darker shades indicate 
higher item counts per bin. Instruction tuning shifts counts 
toward the highest-confidence bin, implying reduced 
probability for other labels (not shown).

Figure 5 (left). Calibration plot for Ministral-8B-Instruct on 
the same MMLU dataset. While this model lacks a publically 
available base model, it shows significantly less polarization 
compared to the other instruction tuned models assessed.

• Datasets: Four multiple-choice datasets  - MMLU, ArcReasoning, GSM8K, GPQA
• Models: three model-size pairs (7 B, 24 B, 70 B), each with a base and instruction-tuned version.
• Confidence scoring: Treated label probabilities as model confidence scores, both raw and 

normalized (excluding mass on non-label tokens).
• Calibration analysis: Compared calibration performance (e.g., calibration plots, ECE) between 

base vs. instruction-tuned models and between raw vs. normalized confidence.

Experiment Design

Previous Work
• Calibration comparison in GPT-4 Technical Report [1]: Evaluated base 

vs. instruction-tuned GPT-4 using MMLU, rephrasing questions as  
classification task.

• Confidence measurement: Used label probabilities (A/B/C/D) as 
confidence scores.

• Key findings: Base GPT-4 showed strong calibration, instruction-tuned 
GPT-4 exhibited degraded calibration (see Figure 3).

• Underlying hypothesis: Instruction tuning shifts token-probability 
distributions away from the original training data “ground truth”,  
degrading calibration significantly.

Figure 3 (right). Calibration plots of the base model (top) and the instruction tuned 
(bo�om) GPT-4 model on a subset of the MMLU dataset. On the x-axis are bins according 
to the model’s confidence (logprob) in each of the A/B/C/D choices for each question; on the 
y-axis is the accuracy within each bin. The do�ed line represents perfect calibration. Right: 
Calibration plot of the post-trained GPT-4 model on the same subset of MMLU. The post-
training hurts calibration significantly. Adapted from the GPT-4 Technical Report [1]
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Research performed at with Resources generously provided by

Frequency of AnswerVerbalized Uncertainty [4]
Metric Explanation: Verbalized Uncertainty prompts the model, 
immediately after answering, to output a numeric confidence score
• Biased score distribution: Models consistently produced a narrow 

range of high verbalized confidence values (e.g., 0.0, 0.5, 0.9, 1.0, see 
Figure 6), likely influenced by training and instruction tuning.

• Unreliable calibration: Verbalized scores showed no meaningful 
correlation with answer correctness, indicating they are unreliable 
proxies for true model confidence.

Figure 6. Confidence Score Distribution for Verbalized Uncertainty per Model.
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Summary of Results

Results

• Models & datasets: Benchmarked four 
instruction-tuned models (7B, 8B, 24B, 70B) on 
eight scientific QA datasets—five multiple-
choice and three arithmetic—each with known 
ground truth.

• Prompting strategies: APriCoT [3] for multiple-
choice and CoT for arithmetic tasks.

• Sampling & scale: Subsampled each dataset to 
1,000 items and sampled 10 outputs per prompt, 
totaling 181,360 QA prompts per model.

• Metrics evaluated: Compared four uncertainty 
metrics, as highlighted on the right.

• Frequency of Answer was the only metric 
providing well-calibrated confidence closely 
aligned with answer correctness.

• Verbalized-based metrics showed strong biases 
and weak correlation with accuracy.

• Claim-Conditioned Probability fails on on long 
form answers

• Semantic consistency validated: Frequency of 
Answer supports it as a useful signal but is 
limited by high sampling cost and complex 
semantic clustering, making it unsuitable for 
open-ended QA.

• Conclusion: Results highlight the need for more 
efficient and robust uncertainty metrics and 
general benchmarking thereof.

P(True) [5]
Metric Explanation: P(True) queries the model, 
after producing its answer, to classify that answer 
as “True” or “False,” using the underlying token 
probabilities assigned to the corresponding labels 
as confidence scores.
• Polarized scores: P(True) yields highly skewed 

confidence distributions, with most scores near 
1.0 and minimal use of intermediate values, 
reflecting model response bias.

• Unreliable calibration: Confidence scores show 
li�le correlation with correctness, making 
P(True) an unreliable measure of uncertainty.

Metric Explanation: Frequency of Answer 
quantifies confidence by sampling multiple 
generations for the same prompt and assigning 
each answer a score equal to the frequency of 
semantically identical samples.
• Reliable Calibration: Higher answer 

frequency consistently aligns with correctness 
across task types, with increased diversity 
indicating uncertainty in harder datasets, 
yielding well-calibrated confidence estimates.

• Limited applicability: High sampling cost and 
reliance on semantic clustering make the 
method impractical for open-ended QA.

Claim-Conditioned Probability [6]
Metric Explanation: Claim-Conditioned Probability (CCP) 
evaluates uncertainty by, for each token in the model’s output, 
using an NLI model to determine which of the top probable token 
alternatives entail the original meaning, and computing token-level 
certainty as the ratio of probability mass assigned to entailing 
tokens to the sum of entailing and contradicting tokens. Sequence-
level confidence is then obtained by multiplying token certainties.
• Unstable scores: CCP confidence vanishes on longer outputs 

due to multiplicative token aggregation, and is further 
destabilized by NLI errors during semantic token equivalence 
checks and the inclusion of stop words.

• Unreliable calibration: Confidence scores show no alignment 
with correctness, making CCP unreliable for sequence-level 
uncertainty estimation.

Motivation

Summary of Results

Token Level Calibration

Sequence Level Calibration of Uncertainty Metrics
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• LLMs in science workflows: Potential efficiency gains in literature review, knowledge 
comprehension, and data analysis.

• Hallucination risk: LLMs produce confidently phrased but factually incorrect outputs that are hard to 
identify.

• Role of Uncertainty Quantification (UQ): Automated UQ methods can flag low-confidence or 
potentially erroneous generations, supporting safer downstream use.

• Benchmarking objective: Develop a framework for reproducible benchmarking of uncertainty 
metrics; asses token-level calibration and reliability of sequence-level UQ metrics in scientific question 
answering using the framework.

• First large-scale UQ benchmark for LLMs in scientific QA, covering token-level calibration and 
multiple sequence-level metrics.

• Instruction tuning polarizes token probabilities: Models become overconfident regardless of 
correctness, undermining token-level UQ.

• Sequence-level findings
◦  Verbalization-based metrics are unreliable
◦  Frequency of Answer be�er aligns with correctness but demands heavy computation and semantic 

clustering.
◦  Claim-Conditioned Probability fails at token level due to vanishing confidence over long 

generations and poor semantic equivalence detection.
• LM-Polygraph framework [2] re-engineered into a modular, extensible framework for scalable, 

reproducible UQ benchmarking.

Updating Progress Bar

Skipping Fully Computed Items

Handling Multiple Incoming Edges

Resource Assignment

Batching of Items

Loading/ Storing Cached Results

Execution Wrapper

Calculation of new Statistics

• Foundation: Extends LM-Polygraph [2], which 
encapsulates each uncertainty metric computation steps in 
classes, defining required and provided dependencies.

• Configurable execution nodes: Generalizes modularity by 
representing every processing step as a runtime-
configurable node.

• Dynamic DAG construction: Builds an acyclic directed 
graph at runtime from user specifications, enabling 
optimized execution order.

• Performance optimizations: Supports asynchronous 
processing, result reuse via caching, and batching to 
enable efficient computations.

• Layered execution wrapper: Manages resource allocation 
and persistent, disk-backed caching for scalable, 
reproducible benchmarking of large datasets.

Figure 1 (right). Abstract Visualization of 
the Order of Computation Steps as Acyclic 
Directed Graph in Reworked LM-
Polygraph. This features the dataset 
(orange), intermediate computation steps 
(blue) and calculation of the final uncertainty 
metric scores (green).

Figure 2 (top). Visualization of data items passing through layers of nodes in the 
execution graph. Layers, highlighted in blue, are applied as decorators and are 
conditionally activated based on the configuration. They may transform, filter, 
batch, or consume data either before or after computation. Black dots indicate where 
individual layers access the data. Data may not pass through all layers; for example, 
if a node's result is cached for an item, the Caching Layer retrieves and returns the 
cached result without invoking lower layers. The execution wrapper manages the 
invocation of the computation encapsulated by the node.
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